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1 INTRODUCTION

Linear Threshold Functions (LTFs) are a type of boolean functions f(x) = sign(〈w, x〉−θ), param-
eterized by a weight vector w ∈ Rn and a threshold θ ∈ R. It represents a separation of the input
space along the hyperplane defined by w, θ and have been extensively used in many classification
tasks. Learning unknown LTFs has been one of the most studied area in machine learning since its
birth, with the earliest known algorithm being the Perceptron Algorithm by Rosenblatt (1958).

A more practical variant of this problem is learning LTFs under some noise model, which is used
to characterize uncertainties in the real world. Properties of specific noise models have significant
implications on the learnability of the problem. On one hand, the simplest form of such noise model
could be the Random Classification Noise (RCN), where in each example the label is flipped with
probability η < 1

2 . On the other hand, if the labels are determined by some adversarial oracle,
it becomes one of the most challenging noise model to learn from called adversarial noise whose
computational intractability is known Guruswami & Raghavendra (2006).

Recently, Diakonikolas et al. (2019) shows that efficient weak LTF learner exists in the presence of
Massart noise, a noise model that generalizes RCN and adversarial noise with noise rate at most η <
1
2 . In the following sections, we plan to give more backgrounds around the ideas in Diakonikolas
et al. (2019) by examine existing approaches for learning LTFs under different margin and noise
conditions.

2 PRELIMINARIES

2.1 MASSART NOISE

Let c : Rn → {0, 1} be the target hypothesis, Dx be an arbitrary distribution over Rn, and 0 < η <
1
2 . A sample from a Massart noise model is defined as

EXMas(c,Dx, η) =

{
(x, c(x)) with probability 1− η(x)

(x,−c(x)) with probability η(x)

where ∀x ∈ Rn : η(x) ≤ η. An equivalent formulation is that the label is controlled by an adversary
with probability η Sloan (1988). The definition of Massart noise lies between RCN and adversarial
noise, and when ∀x ∈ Rn : η(x) = η it is identical to RCN.

2.2 β-OUTLIER REMOVAL

When developing algorithms for learning LTFs, it is usually handy to preprocess the underlying dis-
tribution so that ∀w ∈ Rn, ‖w‖2 = 1 : Ex∼Dx [〈w, x〉2] = 1. In other words, the expected squared
distance between x ∼ Dx and any hyperplanes going through the origin is 1. This can be approxi-
mately accomplished by transforming the sampled set of inputs according to their eigenvectors and
eigenvalues. Consider the matrix form X of the input set S, the matrix A = E(xxT )

1
2 = (XXT )

1
2

can be obtained by diagonalizing the symmetric matrixXXT . Then we can simply takeX = A−1X
to obtain the desired transformed input (we will refer to this as transforming to isotropic positions).
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An issue with this approach, however, is that the eigenvalues along some principle directions of X
can be skewed away from the actual variance in the presence of outliers. For example, it might be
the case that some input points are extremely far away from the mean along some principle direction
w∗, which causes almost every other points to have 〈w∗, x〉2 ≈ 0 after applying the transformation.
Thus, it is important to detect such outliers and exclude them from the computation of A. A point
x∗ is defined as a β-outlier if

∃w ∈ Rn, ‖w‖2 = 1 : 〈w, x∗〉2 ≥ βEx∼Dx [〈w, x〉2]

The primary criteria for removing outliers is that we want to remove a small portion of samples in
S while the remaining set S′ contains no β-outliers for β = poly(n, 1ε ). Blum et al. (1998) shows
that, for β = O(n7b/ε) (b is the bits of precision of the input space), there always exist such S′
which is obtainable in polynomial time. The idea is to iteratively remove points outside a multitude
γ > β

36n of the inertial ellipsoid (the ellipsoid represented by the covariance) of the remain points
until conditions of S′ are satisfied. The algorithm is guaranteed to hault within poly(n, b) iterations
because Vol({w ∈ Rn : E[〈w, x〉2] ≤ 1]|x ∈ ∩ji=0Si}) more than doubles at each iteration j.
Dunagan & Vempala (2004) further proves that, for an arbitrary distribution, with sample complexity
m = Õ(nγ2δ2 ), an ellipsoid T where

(i) Prx∼Dx [x ∈ (1 + δ)T ] ≥ 1− ε
(ii) (1 + δ)T contains no (1 + δ)10γ2 outliers

can be identified in poly(n, b, 1ε ,
1
δ ) time with probability 1 − δ. Thus for any Γ > 0, we can

efficiently obtain an ellipsoid that contains no Γ-outliers.

We refer the readers to Section 5 of Blum et al. (1998) and Theorem 3 of Dunagan & Vempala
(2004) for further details.

3 LEARNING WITH LARGE MARGIN ASSUMPTION

The perceptron learning algorithm used in practice turns out to be very successful when there exists
a non-trivial margin γ > 0 between points and the optimal classification hyperplane. The formal
definition of margin is given below.

Definition 3.1 Given a set of data points S ⊆ Rn, the margin over the samples are defined as
ρ = maxw:|w|2=1 minx∈S |w · x|.

We call S satisfies the large margin assumption if ρ ≥ γ. In the following three sections, we will
look into approaches to learn noisy LTFs under this assumption.

3.1 NOISE FREE

When there is neither noise nor arbitrarily small margin, the perceptron algorithm returns a strong
hypothesis within polynomial time [Minsky & Papert (1969)]. As this is not the main focus of the
article, we will briefly summarize the result in the lemma below as it serves as the base case where
the other more complicated scenarios is reduced to.

Lemma 3.2 Given n labeled linearly separable points (x1, y1) · · · (xn, yn) ∈ Rn × {−1, 1},
the classical perceptron algorithm returns a feasible point in at most 1/ρ2 iterations, where
ρ = maxw:|w|2=1 mini |xi · wi|.

3.2 RANDOM CLASSIFICATION NOISE

Just like many other applications where random classification noise is present, the strategy is to
recast the sample-based noise-free algorithm into one under statistical query. Instead of computing
the update based on a single example that may be polluted, we now use statistical query to estimate
the mean vector over the mis-classified region, namely E(x,y)∼Dη [x · y|y(w · x) < 0]. The idea is
used in Blum et al. (1998). However, as their primary focus is on the margin, we will postpone the
formal statement to Section 4.2.
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3.3 MASSART NOISE

The massart noise has been shown as the most challenging noise model to address. As stated in
Diakonikolas et al. (2019), the updating rule for the perceptron learning algorithm can be viewed
as performing gradient descent on a convex surrogate of the error function. However, under the
massart noise model, it has been shown that the learning task is essentially non-convex as no convex
surrogate can be used to achieve even a weak learner. As this result essentialy has a different flavor
than designing learning algorithm for LTF, we will state the formal result here for reference but will
not expand on the techniques used.

Theorem 3.3 Consider the family of algorithms that produce a classifier sign(w · x), where w∗ is
the minimum of the function G(w) = E(x,y)∼EXMas(c,D,η)[φ(y(w ·x))]. For any decreasing convex

function φ : R → R, there exists a distribution D over B2 × 1 with margin ≤
√
3−1
4 such that the

classifier sign(w∗ · x) mis-classifies at least min( η8γ ,
1
2 ) fraction of the points.

Inspired by the work of Blum et al., the authors of Diakonikolas et al. (2019) realize even though a
global convex proxy is not possible in this case, the space can be divided into region of ”thick stripes”
around the hyperplane, where a local convex proxy for the error function can be found on each of
them. In particular, the local surrogate takes the form of L(w) = E(x,y)∼DLeakyReluλ(−y(w ·x)).
Or equivalently, expressed in terms of the true error function as L(w) = (err(w, x) − λ)|w · x|.
Though the loss function does not behave well when there is a large variance in the quantity |w · x|,
the author manages to show the minimizer does a good job at least in classifying all points that
have large value of |w · x|. As a result, the algorithm can recursively divide the entire space into
”thick stripes” and train a high accurate hypothesis on each of the region through the local convex
surrogate. Informally, the algorithm can be viewed as a loop that runs in two phases while there is
still a significant portion of unclassified area:

1. Obtain a minimizer of the convex surrogate function through iterative stochastic gradient
update

2. Determine the local ”stripe like” region around the current hypothesis hyperplane where
the minimizer does well on. In particular, the region is parametrized by a single threshold
T , namely {x : |w · x| ≥ T}.

The choice of the threshold T here is rather subtle as the algorithm needs to constantly balance
two quantity: on one hand, it cannot filter out too many points as it will make the algorithm run
in forever; on the other hand, it must make sure the mis-classified region is under control as the
hypothesis will do increasingly poor as |w · x| gets smaller. As a result, the choice of the threshold
of w · x becomes finding a feasible solution to the following inequalities

Pr(x,y)∼D[w · x 6= y||w · x| ≥ T ] ≤ η + ε (1)

Pr(x,y)∼D[|w · x| ≥ T ] ≥ γε (2)

If we can indeed find such a T , we can then ensure each time the hypothesis created is both accurate
enough and rules out a significant mass of samples. The author first gives proof of the feasibility of
the task and then gives procedures to construct a valid solution.

The proof relies on two structural lemmas. The first one relates the mass of the large-margin area
and the mis-classification region to the value of the proxy loss function. The second lemma gives an
upper bound over the minimum value of the proxy function by plug in the optimal hyperplane w∗
(not the minimizer of the proxy loss function but the underlying target threshold function). We state
the formal versions of the two lemma for future reference

Lemma 3.4 Given η as the upper bound of Massart Noise and λ = η + ε as the desired error
rate for the learning algorithm, for any vector w such that L(w) < 0, the minimum T that satisfies
Pr(x,y)∼D[hw(x) 6= y|(w · x) ≥ T ] ≤ λ− |L(w)|

2 also satisfies Pr(x,y)∼D[|w · x| > T ] ≥ |L(w)|
2λ .

Lemma 3.5 Given η as the upper bound of Massart Noise, λ = η + ε as the desired error rate for
the learning algorithm and γ as the margin assumed, the minimum value of the proxy function is at
least −γ(λ− η).
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Combining the two lemmas, the feasibility then becomes evident.

The process of finding a feasible threshold exploits the Dvoretzky–Kiefer–Wolfowitz inequality,
which bounds the Kolmogorov distance between the empirical distributions and true distribution.
By requesting a sufficient number of samples, we can then just perform the search on the empirical
distribution and the estimation will be good enough on the underlying real distribution as well.

4 LEARNING WITHOUT MARGIN ASSUMPTION

In most cases, we can not assume that the sample points satisfy the margin assumption. Without the
margin assumption, adversarial samples can be constructed, leading to exponential convergence rate
of the classic perceptron algorithm. For a specific construction, readers can refer to the result stated
in Maass & Turán (1994) for more details. This section hence focus on a variety of techniques, such
as pre-processing and boosting, that can be combined with the existing results for the ”large margin”
scenario to realize margin-independent polynomial learnability in the general case.

4.1 NOISE FREE

4.1.1 IMPROPER LEARNING

Blum et al. (1998) first presents a modified perceptron algorithm that runs in polynomial time
independent of the sample set S. The algorithm has an extra parameter σ and halts when all
x ∈ S : h(x) 6= c(x) satisfies |cos(w, x)| ≤ σ. At each iteration t, it either halts or updates
wt using wt+1 ← wt − (wt · x̂)x̂ for xt : cos(w, xt) = maxx∈S |cos(w, x)| (x̂ is an appropri-
ate multiple of x∗ that makes wt+1⊥x∗). Since we always have cos(w, xt) > σ for each update,
the algorithm converges in O( 1

σ2 ln(n) ln( 1
δ )) steps and returns an algorithm that is consistent with

T = {x ∈ Rn : cos(w, x) > σ}.
The modified Perception algorithm can be combined with with isotropic transformation and the
outlier removal algorithm described in 2.2 to ensure that cos(w, x) > σ with a high probability.
After removing the β-outliers and transforming into isotropic positions, the resulting set S′ satisfies
Ex∈S′ [〈w, x〉2] = 1 and maxx∈S′〈w, x〉2 ≤ βEx∈S′ [〈w, x〉2] = β for any unit vector w. Thus,
Ex∼Dx [cos(x,w)2] ≥ Ex∼Dx [〈w,x〉

2]
max|x|2 ≥ 1

βn . Since cos(x,w)2 ∈ [0, 1], this implies that at least 1
2βn

fraction of x ∈ S′ satisfies cos(x,w)2 ≥ 1
2βn . Running the modified perceptron algorithm with

σ = 1
2βn on S′ therefore returns a hypothesis that is consistent with at least 1

2βn of Dx.

The algorithm above gives a weak learner that achieves err(h) < ε on T ⊂ Rn with probability at
least 1− δ. To construct a strong PAC learner, we can iteratively restrict the distribution D(t)

x to the
unknown region Ŝt−1 = {Rn ∩ T c1 ∩ .. ∩ T ct−1} and apply the algorithm to obtain wt and Tt. The
final hypothesis is a decision list {(T1, w1), (T2, w2), ..., (Tt, wt)} with the rule ”if x ∈ Ti (in other
words, cos(wi, x) > σ), output h(x) = sign(〈w, x〉), otherwise repeat on (Ti+1, wi+1). If none of
the conditions satisfied, return randomly”. Since ∀t : Pr

x∼D(t)
x

[x ∈ Tt] ≥ 1
2βn , Prx∼Dx [x ∈ Ŝt] ≤

(1 − 1
2βn )t. Therefore, in the final hypothesis, the probability mass on the unknown region can be

arbitrarily small (= O(δ)), while the error on each known region Ti is small with high probability.
Similar idea is also used in Diakonikolas et al. (2019) to construct a stronger hypothesis.

4.1.2 PROPER LEARNING

One may wonder whether proper learning is possible in the small margin noise-free case. The ob-
vious approach is to model the learning task as a linear program. Then, standard polynomial algo-
rithm like interior method or ellipsoid algorithm can be used to efficiently compute feasible solution.
Dunagan & Vempala (2008) yet has proposed an alternative approach to solve linear programs of
the form Ax ≥ 0, x 6= 0 through a re-scaling procedure followed by a standard perceptron learning
algorithm.

As mentioned in Lemma 3.2, the running time of the original algorithm crucially depend on the
quantity ρ(A) = maxx:|x|=1 mini

1
|ai| (aix), which the author denotes geometrically as the ”radius”

or ”roundness” of the constrain matrix A in the corresponding linear program. The key intuition
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behind the rescaling phase is then to iteratively increment ρ through linear transformation of the
constrain matrix A.

Ideally, the transformation takes the form of A(I + vx∗x∗T ), where x∗ =
argmaxx:|x|=1,Ax≥0 mini

1
|ai| (aix) and v is a scalar controlling the step size towards the

ideal constrain matrix. By Setting v → ∞, the result after the transformation will have its ρ value
getting arbitrarily closed to 1. However, finding such a transformation is as hard as solving the
original half-space learning algorithm as x∗ itself also needs to satisfy the constrain Ax ≥ 0. Thus,
the author devises a routine, which they denote as the ”Perceptron Improvement Phase”, that aims
at finding an approximate solution x̂ which satisfies the following relaxed version of the constrains

1. x̂ · z ≥ 1√
n

, where Az ≥ 0

2. mini
1
|ai|aix̂ ≥ σ

The phase relies on random initialization and an iterative updating rule to obtain such x̂. Through a
simple probabilistic argument, it turns out for any vector z ∈ Rn, a random unit vector ~x0 actually
satisfy the first property with constant probability. After that, much like the updating rule of the
perceptron algorithm itself, the auxiliary routine iterative searches for ai where the second property
is violated and executes the update rule x← x− (āi · x)āi, where āi) is the normalized unit vector
parallel to ai. With some straightforward computation, the author shows the update rule will not
influence the validity of the first property and will eventually halt at a x̂ which satisfies the second
property given the initialization x0 is legit.

In Lemma 3.3, they argue that such approximation is good enough in a sense that the ”radius” of the
matrix transformed by I + x̂x̂T gets improved by at least a multiplicative factor of 1 + 1

3n after the
rescaling. Thus, they could just repeat the routine until the radius ρ becomes big enough. Then, they
could just run the classic perceptron algorithm and the routine is guaranteed to terminate inO(1/ρ2)
iterations.

Remark 4.1 One may notice that the algorithm do not have a proper way for checking whether the
estimation returned by the improvement phase indeed satisfies the first property as the algorithm
does not have a valid z in hand. Indeed, it is possible the algorithm updates the constrain matrix A
with an invalid x̂, leading to decrease in ρ. Fortunately, the author manages to show that ρ will not
decrease too much in this case. (In fact, it will not decrement more than a multiplicative factor of
1 1
32n −

1
512n2 .) As a result, ρ will have an overall increasing trend since the increments outweight

the downturn.

4.2 RANDOM CLASSIFICATION NOISE

Similar to the large-margin case, the strategy is again to adapt the noise-free algorithms into their
statistical query based version. It turns out improper learning is relatively easy in this case. As
described in Blum et al. (1998), the outlier-removal routine is not affected by the classification
noise at all since the computation does not involve any label but only deals with the distribution of
input vectors. On the other hand, the modified perceptron algorithm does rely on the following two
properties of the update in order to act properly

1. cos(w, x)l(x) ≤ −σ/2, where σ is the fixed threshold rule used

2. cos(w∗, x)l(x) ≤ −σ2

16
√
n lnn

, where n is the dimension of the input point,

which is a relaxation of the original criteria

1. cos(w, x)l(x) ≤ −σ
2. cos(w∗, x)l(x) ≤ 0

Fortunately, statistical version of the update rule indeed satisfy the requirements. In the noise-
free algorithm, the update rule explicitly searches for a mis-classified sample x which maximizes
the angle cos(w, x), and then performs the update rule w ← −(w · x)x. Alternatively, through
statistical query, one can easily estimate the quantity E(x,y)∼D[(w · x)x| cos(w, x)(w · x) ≤ −σ].
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Since the conditional expectation itself satisfies the finer condition, we can make sure the result of
statistical query will satisfy the relaxed version with high probability if we drive the estimation to
high accuracy (polynomial in σ and n).

Thus, the entire algorithm can easily be adapted to work under the statistical query model, and hence
under random classification noise.

4.3 MASSART NOISE

The algorithm combines the technique used in Sections 3.3 and 4.1.1. While algorithm in 3.3 ensures
PAC-learnability in the presence of large margin, the outlier removal algorithm 4.1.1 can be used as
a general tookit for restoring a ”probabilistic” version of the margin assumption in the margin-free
case. In particular, it makes sure the expectation of (w · x)2 over the distribution of x is lower
bounded for any unit vector w. We will state the formal definitions of both the original margin and
this probabilistic version for clarity

1. Original Margin maxw:|w|2=1 minx∼D(w · x)2 ≥ γ
2. Probabilistic Margin Ex∼D[(w · x)2] ≥ Γ for all unit vector w.

Remark 4.2 There are many ways to interpret the second property. In Dunagan & Vempala (2004),
the author interprets it as ”no matter which hyperplane is chosen, a significant portion of points are
always far from the hyperplane”. While in Diakonikolas et al. (2019), it is alternatively interpreted
as the ”minimum eigenvalue of the covariance of the distribution”. They are equivalent as the quan-
tity can easily be rewritten as ρ̂ = minw:|w|2=1Ex∼D[ 1

|x|22
(w·x)2] ≤ minw:|w|2=1 w

TEx∼D[xxT ]w

assuming the l2 norm of all points in the distribution is bounded by 1. The assumption on l2 norm
can easily be realized through rescaling after removing all the outliers having large l2 value.

The main lemmas the algorithm relies on are Lemmas 3.4 and 3.5. Lemma 3.4 is not really affected
as it is not based on the margin assumption. Thus, the only remaining work is to adapt the proof
of Lemma 3.5 so that it works even if we only have ”probabilistic margin” over the distribution of
sample points. The adaptation turns out to be seamless as the loss function is itself an expectation
over the distribution.

Thus, combining the two techniques, the author obtain the first distributional-independent PAC
learning algorithm for linear threshold functions under Massart noise model.

5 CONCLUSION

We have examined several existing approaches to learn LTFs under different noise models and mar-
gin conditions. Recent works show that even learning LTFs under Massart noise, which is considered
one of the most challenging noise model to learn from, is efficiently feasible. A problem yet to be
addressed is whether there exist efficient noise-tolerant proper learning algorithms for LTFs under
Massart noise. Diakonikolas et al. (2019) suggested that proper learning might be achievable by
improving upon Dunagan & Vempala (2008). Whether it is true remains an open question.
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