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1 Introduction

Mechanism design can be seen as the study of algorithm design with inputs from strategic bidders.
This field initially emerged as the combination of auction theory, game theory and computer sci-
ence. There has been significant progress on this topic since 2000.

One important direction is to find out an optimal mechanism for selling items which maximizes
the revenue earned. When perfect information of the distribution over the buyers’ valuations are
given, there are well-established theorems and methodologies which allow designers to fine-tune a
mechanism for maximum expected revenue ([HL10]).

However, in practice, sellers rarely have perfect information over the consumer population. This
then leads to the important question whether one can still implement efficient mechanisms given
just sample access of past consumer data.

While there are some experimental works that investigate how pricing of mechanism can be adjusted
with information of past data ([OS11]), this survey focuses on some recent theoretical progress on
how good a mechanism based on empirical data could be compared to the optimal one with perfect
information. In particular, it visits import results from [HMR18], [CR14], [MR16] and outlines the
analysis practiced in these works.

The logical dependence is such starting from Single Item & Single Buyer, then Single Item & Mul-
tiple Buyers, and finally Multiple Items & Multiple Buyers. Our survey is mainly based on three
papers and by no means inclusive. However, it could serve as a starting point for whom willing to
delve more into this topic.

2 Single Item, Single Buyer

In real-life mechanism design, the distribution of a buyer’s valuation is usually unknown. In their
paper [HMR18], the authors consider the single-item, single-buyer setting, where the buyer’s valu-
ation is drawn from an unknown distribution D. The seller only has information about D in the
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form of m i.i.d. samples. The authors prove the number of samples that are necessary and sufficient
to obtain a (1− ε)-approximation to the optimal revenue. That is, given these m samples, we can
determine a reserve price p that gives a revenue at least (1− ε) times the optimal revenue.

The main result of this paper is that, Õ(ε−3/2) samples are sufficient for MHR distributions. It is
worth mentioning that, this problem is different from estimating the distribution D itself, because
the optimal reserve price from an estimated distribution might not give a near-optimal approxi-
mation to the true optimal revenue. Moreover, this problem is also different from estimating the
optimal revenue directly. As a direct corollary of a result in information theory, we can show that
Õ(ε−2) samples are necessary to estimate the expected revenue by even a single fixed reserve price.
In this sense, the paper shows that near-optimal revenue maximization is a strictly easier problem
than learning even the very simple statistics of a distribution.

Distribution Upper Bound Lower Bound

MHR O(ε−3/2 log ε−1) Ω(ε−3/2)

Regular O(ε−3 log ε−1) Ω(ε−3)

General O(δ−1ε−2 log(δ−1ε−1)) Ω(δ−1ε−2)

Bounded Support O(Hε−2 log(Hε−1)) Ω(Hε−2)

The results of sample complexity bounds from this paper are summarized in the table above.
For bounded-support distributions, the support is [1, H]. For general distributions, instead of
considering the optimal revenue R∗, we consider R∗δ , which is the optimal revenue from reserve
prices with sale probability q at least some δ ∈ [0, 1]. In other words, we do not consider the low
quantiles that correspond to high values. The reason is that, if the optimal reserve price has sale
probability at least δ, then approximating R∗δ is equivalent to approximating R∗. This is the case for
sufficiently small δ and most of the typical “reasonable” distributions. Even if not all distributions
satisfy this property, this approach still enables parameterized sample complexity bounds that do
not require distributional assumptions such as regularity.

2.1 Asymptotic Upper Bounds

To obtain the asymptotic sample complexity upper bounds, we first need the following definition.

Definition 2.1. Given m samples v1 ≥ · · · ≥ vm, the empirical reserve is

arg max
vi

i · vi.

If we only consider i ≥ cm for some c ∈ [0, 1], then it is called the c-guarded empirical reserve.

The main result of this paper gives the sample complexity upper bound for MHR distributions.

Theorem 2.2. The empirical reserve with m = Θ(ε−3/2 log ε−1) samples is (1− ε)-approximate for
all MHR distributions.

To prove Theorem 2.2, we use the following two properties of MHR distributions. Lemma 2.3 states
that the optimal quantile of an MHR distribution is at least 1

e . Lemma 2.4 states that the revenue
decreases quadratically in distance between the reserve price and the optimal one in quantile space.
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Lemma 2.3. For all MHR distributions, q∗ ≥ 1
e .

Lemma 2.4. For all MHR distributions, R(q∗)−R(q) ≥ 1
4(q∗ − q)2R(q∗) for every q ∈ [0, 1].

Proof sketch for Theorem 2.2: First, for any two samples v1, v2 with quantiles q1, q2 such that
either q1 < q2 < q∗ or q∗ < q1 < q2, if the revenue of one of them is at least (1− ε

2) times smaller
than that of the other one, then with probability at least 1 − o( 1

m2 ), the algorithm would choose
the latter sample. Furthermore, with high probability, there is at least one sample between both
[(1− ε

2)q∗, q∗] and [q∗, (1 + ε
2)q∗] in quantile space. These samples are (1− ε

2)-optimal by concavity
of the revenue curve. The theorem then follows from union bound.

The sample complexity upper bound for general distributions is given in the following theorem.

Theorem 2.5. The δ
2 -guarded empirical reserve with m = Θ(δ−1ε−2 log(δ−1ε−1)) gives revenue at

least (1− ε)R∗δ for all distributions.

Proof sketch for Theorem 2.5: Let q∗δ be the optimal sale probability at least δ. First, with high
probability, there exists at least one sampled price with quantile between [(1− ε

3)q∗δ , q
∗
δ ]. This price

has revenue at least (1 − ε
3)R∗δ . Then since q∗δ ≥ δ, with high probability, this price has rank at

least δ
2 among sampled prices. So it is considered by the empirical reserve algorithm. Furthermore,

with high probability, any sampled price with rank at least δ
2 has sale probability at least δ

4 . Lastly,

with high probability, for prices with sale probability at least δ
4 , the algorithm estimates their sale

probability up to a (1− ε
3) factor with m = Θ(δ−1ε−2 log(δ−1ε−1)) samples.

For distributions with bounded support [1, H], the optimal sale probability q∗ is at least 1/H. This
is because the optimal reserve price p∗ is at most H and the optimal revenue R∗ is at least 1, as
we can set the reserve price to be p = 1 and obtain a sale probability q = 1. Therefore we have the
following theorem as a direct corollary of Theorem 2.5.

Theorem 2.6. The empirical reserve with m = Θ(Hε−2 log(Hε−1)) samples is (1−ε)-approximate
for all distributions with bounded support [1, H].

2.2 Asymptotic Lower Bounds

The authors borrow techniques from differential privacy and information theory to give the asymp-
totic sample complexity lower bounds. The high-level plan is to reduce the pricing problem to a
classification problem. First, we need to introduce some information theory preliminaries. Consider
two distributions P1 and P2 over a sample space Ω. Let p1 and p2 be the corresponding probability
density functions. We have the following definitions and theorems.

• Statistical Distance: δ(P1, P2) = 1
2

∫
Ω |p1(ω)− p2(ω)| dω.

• KL Divergence: KL(P1‖P2) = Eω∼P1

[
ln p1(ω)

p2(ω)

]
.

• Pinsker’s Inequality: δ2(P1, P2) ≤ 1
2KL(P1‖P2).

• No classification algorithm can distinguish P1 and P2 with probability greater than δ(P1,P2)+1
2 .
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One nice property of the KL divergence is that it is additive over samples: if P1 and P2 are the
distributions over m samples of D1 and D2, then KL(P1‖P2) = m · KL(D1‖D2). In addition, to
distinguish P1 and P2 correctly with probability at least 2

3 , the statistical distance between P1

and P2 should be at least 1
3 . Furthermore, Pinsker’s inequality relates the KL divergence and the

statistical distance. It implies that the statistical distance of m samples from D1 and D2 is upper
bounded by 1

2

√
m · (KL(D1‖D2) + KL(D2‖D1)).

Using techniques in differential privacy, we can construct two distributions D1 and D2 with small
KL divergence but disjoint approximately optimal price sets. Then we can show that, if there
exists a pricing algorithm that is (1 − ε)-approximate for both D1 and D2, then there exists a
classification algorithm that distinguishes P1 and P2 correctly with probability at least 2

3 , using
the same number of samples as the pricing algorithm. By the arguments above, the classification
algorithm requires the statistical distance between P1 and P2 to be at least 1

3 , and we need at
least m = 4

9 ·
1

KL(D1‖D2)+KL(D2‖D1) samples for this. This is exactly the number of samples nec-
essary for the pricing algorithm. Therefore, we obtain a sample complexity lower bound as intended.

3 Single Item, Multiple Buyers

In this section, we extended our discussion to the setting of single item and multiple buyers. This
section is mainly based on the paper by Cole and Roughgarden in 2014. To be more concrete,
we will assume that there are k bidders and that bidder i’s distribution is drawn from Fi where
1 ≤ i ≤ k and Fi’s are independent but not necessarily identical. Denote the joint distribution
F = F1 × F2 × · · · × Fk. The main result is as follows: samples of the number polynomial in k and
1/ε are necessary and sufficient to achieve a (1− ε) approximation of the optimal revenue.

3.1 m-sample auction strategy and α-strongly regular distribution

Suppose m independent and identically distributed samples v1, . . . , vm are drawn from F . In
learning theory, the performance of an algorithm depends on the data. That is, the expected
revenue of the auction resulting from samples should condition on samples. This motivates the
definition m-sample auction strategy which will be used to measure the performance of the auction.

Definition 3.1. An m-sample auction strategy is a map from the m samples to an auction. The
expected revenue of a m-auction strategy is with respect to both the samples v1, v2, . . . , vm and the
testing input vm+1.

We remark that under this language, the expected revenue of an optimal auction is with respect
to a single sample from F which is just the input of the auction.

To obtain useful results, we have to further restrict our attention to some special class of allowable
distributions. This is motivated by considering the following distribution class:

fM =

{
M2 with probability 1/M

0 with probability 1− 1/M
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The optimal auction will earn expected revenue of M by pricing at M2. However, for any fixed
m, there is no optimal m-sample auction strategy with near-optimal revenue for this class of
distributions. This is because for sufficiently large M , all m samples are 0 with high probability
and thus the auction strategy will have no information about what that M really is. The right
notion seems to be what is called the α-strongly regular distribution.

Definition 3.2. Let F be a distribution with positive density function f on its support [a, b], where

0 ≤ a < ∞ and a ≤ b ≤ ∞. Let ϕ(v) = v − 1−F (v)
f(v) denote the corresponding virtual valuation

function. We call F to be an α-strongly regular distribution if

ϕ(y)− ϕ(x) ≥ α(y − x)

whenever y > x ≥ 0.

We note that for a differentiable virtual valuation function φ, it is α-strongly regular if and only
if its derivative is greater than or equal to α at every point. This is a generalization of regular
distributions and the MHR distributions since they are the special cases when α = 0 and α = 1
respectively. The authors gave some evidence why the definition of α-strongly regular distribution
seems to be the right notion in terms of the following quantile estimation.

Lemma 3.3. Let F be an α-strongly regular distribution with α ∈ (0, 1) and monopoly price r. If
q(r) is the quantile of valuation r in the distribution F , then q(r) ≥ α1/(1−α).

Setting the limit for α = 1 we recover the well-known property of MHR distributions as in Lemma
2.3.

3.2 The lower bound

Proving lower bound is notoriously known in computational complexity. In that paper, however,
Cole and Roughgarden managed to show samples of number polynomial in k and 1

ε are necessary
for a (1− ε) approximation.

Theorem 3.4. For every auction strategy Σ, for every k ≥ 2, for every sufficiently small ε > 0,
for every α ≥ 0 and m satisfying:

• α = 1 and m ≤
(

1−ln 2
96e3 min{1, ke} ln max{e,k}

)1/2
k√
ε
;

• 0 < α < 1, α1/(1−α) ≥ 1
k , and m ≤

(
1−α21−α

96e3

)1/(1+α)
k

ε1/(1+α)
;

• 0 < α < 1, 1
2m < α1/(1−α) < 1

k , and m ≤
(

1−α21−α

96e3

)1/(1+α) (
1

kα1/(1−α)

)α/(1+α)
k

ε1/(1+α)
;

• 0 < α < 1, α1/(1−α) ≤ 1
2m , and m ≤ (1−α21−α)2α

96e3
k
ε ;

• α = 0 and m ≤ 1
96e3

k
ε ,

there exists a set F1, . . . , Fk of α-strongly regular valuation distributions such that the expected
revenue of Σ (over the m samples and the input) is less than 1− ε times that of an optimal auction
for F1, . . . , Fk.

This theorem essentially says that in most cases we need at least linear or near-linear in the number
of bidders k that amount of samples in order to achieve a good approximation, even when we are
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restricted to α-strongly regular distributions. We note that at the two extreme cases when α = 0
and α = 1, namely for regular distributions or MHR distributions, the lower bounds are of the
order k

ε and k√
εlnk

respectively.

This lower bound forms a contrast to other previous results. For example, in the paper by Dhang-
watnotai, Roughgarden and Yan in 2010, they showed that for single item single buyer setting and
if the distribution is regular, then samples of the number polynomial many in 1/ε suffice for a
(1− ε) approximation. Also, in the same paper, they showed that for single item, multi buyers but
with identical distribution, and further if the distribution is regular, then samples of the number
polynomial many in 1/ε also suffice for a (1 − ε) approximation. The lower bound result by Cole
and Roughgarden result is in contrast to previous upper bounds because the polynomials there do
not depend on k. This contrast shows that the interplay between bidder competition fundamen-
tally changes the sampling complexity. Another result proved by Hartline and Roughgarden in
2009 says that in the setting of single item and multi buyers with not necessarily identical regular
distributions, if only a quarter approximation of the optimal expected revenue is required, then
literally a single sample suffices. Thus the requirement of a nearly optimal approximation also
plays a fundamental role.

The proof to Theorem 3.4 is essentially by construction. The idea is to consider the most “tail-
heavy” distributions for any fixed α. That is,

Fα(v) = 1−
(

1
1+(1−α)v

) 1
1−α

for 0 ≤ α < 1

F 1(v) = 1− e−v for α = 1

They showed that for any fixed α and any auction strategy Σ, there exists a set of F1, . . . , Fk
α-strongly regular distributions such that when the number of samples is below what is stated in
Theorem 3.4, the expected revenue of that auction strategy Σ is not nearly optimal. The exact
statement for the above sentence is technical. The idea is to define a distribution over α-strongly
regular distributions as the following. Each bidder i is either type A or type B with equal possibility.
If a bidder i is of type B, a number q is drawn uniformly from the interval

[
δ

2k ,
δ
k

]
and the value

Hi = (Fα)−1 (1−q) is computed. The bidder i ’s distribution Fi is then defined to be Fα on [0, Hi)
with a point mass with the remaining probability 1 − Fα (Hi) at Hi. If a bidder j is of type A,
then the distribution is exactly the same except its Hj is set to (Fα)−1 (1− δ

2k

)
.

3.3 The upper bound

The upper bound restricts back to regular distributions. This is probably due to simplicity consid-
eration since the proof for regular distributions is already highly technical.

Theorem 3.5. In a single-item auction with k bidders with independent regular valuation distri-

butions, if m = Ω
(
k10

ε7
ln3 k

ε

)
, then there is an m -sample auction strategy with expected revenue

at least 1− ε times that of an optimal auction.

This is proved by analyzing the so-called “empirical Myerson auction”. Essentially, the empirical
Myerson auction does what is natural to do, i.e. draw the “empirical revenue curve” for each bidder
i using the samples and then run the optimal Myerson’s auction on the empirical ironed virtual
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valuations. The algorithm for drawing the empirical ironed revenue curve for each bidder i is stated
as follows:

• Suppose that the m independent samples drawn from Fi have values vi,1 ≥ vi,2 ≥ . . . ≥ vi,m.
Define the ”empirical quantile” of vi,j as 2j−1

2m .

• Discard the bξ̂mc − 1 largest samples, for a suitable ξ̂ > 0. Let S denote the remaining
samples.

• For each remaining sample vi,j ∈ S, plot a point
(

2j−1
2m , 2j−1

2m vij

)
.

• Add points at (0,0) and (1,0) .
• Take the convex hull - the least concave upper bound - of this point set. Denote the resulting

“ironed empirical revenue curve” by CRi.
• The empirical ironed virtual value for v is defined to be v itself if v > vi,ξ̂m and to be the

slope of the revenue curve CRi in the interval defined by the empirical quantiles of vi,j and
vi,j+1 where vi,j and vi,j+1 are two samples in S sandwiching the value v otherwise.

We remark that the closed formula for ξ̂ in step 2 is not explicitly given in the paper. However,
this turns out to be an easily computable value of the order O( εk + 1/2m).

We summarize here the high-level point of view for how those lemma pieces in the paper are or-
ganized. The first thing to do is to establish a relation between the empirical quantile and the
true expected quantile. This argument is standard by the deviation bound, the Chernoff bound.
With high probability and for almost all values, the empirical quantile is a good multiplicative
approximations to the their true expectation.The next step is to show that with high probability
and for almost all quantiles, the empirical virtual value φ̄(q) is sandwiched between the true virtual
values with small multiplicative parameters. Formally speaking, Cole and Roughgarden showed
that we can always choose suitale δ1 and δ2 such that φ̄(q) is sandwiched between φ(q(1 + δ1)) and
φ(q/(1 + δ2)) with some additive factors which is a function of k and ε. This gives us a revenue
bound when the empirical Myerson’s auction turns out to allocate the item to the same bidder as
the optimal Myerson’s auction. The last part is to bound the revenue loss which is caused in the
following scenario: the empirical virtual valuation of a different bidder j might be larger than its
true value, which is the nature of sampling, and then it causes the empirical Myerson’s auction
to allocate to j instead of the rightful winner i. Cole and Roughgarden proved that the revenue
reduction caused by this scenario is also under control.

The discussion for one item and multiple buyers setting is now complete.

4 Multiple Item, Multiple buyers, Distribution Independent

Most of the previous results rely on structural properties of the valuation distribution. In this
section, we investigate the paper [MR16], where the authors explore possibilities of achieving guar-
antees in the distribution-independent setting.

To achieve that, we need to borrow tools from learning theory where we aim at searching for
an optimal hypothesis in a class of candidate hypothesis. In general, the more complicated the
search space, the harder it is to find solutions that enjoy good generalization properties. Similar

7



tradeoff happens when we want to learn the optimal mechanism from sample data. In particular,
the more complex the auction, more sample we need in order to ensure good generalization property.
Hence, in this section, we mainly focus on simple auction class such as pricing and second-price
bidding.

4.1 Revenue maximization and PAC learning

PAC learning (acronym for probably approximately correct learning) is a important model in
learning theory. To formalize the problem, we are first given a class of functions H := {h : X 7→ Y}.
Over there, there is a fixed, albeit unknown, hypothesis h∗ often denoted as the target. The goal
is to give an (ε, δ)-learner whose definition we give as follow.

Definition 4.1. An algorithm A is denoted as an (ε, δ) learner if, with oracle access of the form
(x, h∗(x)) sampled as x ∼ D, it can output a hypothesis h̃ ∈ H satisfying

err
(
h∗(x) , h̃(x)

)
≤ ε

with probability at least 1− δ.

Usually, given the samples, the algorithm A itself is just the Empirical Risk Minimizer (E.R.M).
Namely, given m pairs (x(i), h∗(x

(i))), we simply output argminh∈H
∑

i∈[m] err
(
h∗(x

(i)), h(x(i))
)
.

The main result we will rely on from learning theory is a bound on the generalization error of the
E.R.M hypothesis. At a high level, the theorem states that the average error of a hypothesis won’t
differ too much with its expected error over the entire population if the number of samples are
large enough.

As we have briefly discussed, the bound crucially depends on the “complexity” of the inner structure
of the class of hypothesis considered. When the hypothesis is a real-valued function, one commonly
used metric is the Pseudo-Dimension (PD).

Definition 4.2 (Pseudo-dimension). Let F ⊆ RX and let xm1 = (x1, · · · , xm) ∈ Xm. We say xm1 is
pseudo-shattered by F if there exists r = (r1, · · · , xm) ∈ Rm such that for any b = (b1, · · · , bm) ∈
{−1, 1}m, there exsits fb ∈ F such that sign(fb(xi)−ri) = bi for all i ∈ [m]. The pseudo-dimension
of F is the cardinality of the largest set of points in X that can be pseudo-shattered by F :

PD(F) = max

{
m ∈ N

∣∣∣∣there exists xm1 ∈ Xm such that xm1 is pseudo-shattered by F
}
.

Relying on the notion of pseudo-dimension, we state the following bound on generalization error.

Theorem 4.3. Suppose F is a class of real-valued functions with range in [0, H] and pseudo-
dimension PD(F). For every ε > 0, δ ∈ [0, 1], the sample complexity of (ε, δ)-uniformly learning
the class F is

n = O

((
H

ε

)2(
PD(F) ln

H

ε
+ ln

1

δ

))
.

So far, all the tools are stated in the learning theory context. We now need to connect it to revenue
maximization of auction. The connection is not explicitly spelled out in the work of [MR16] but is
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touched in a previous work [MR15].

At a high level, an auction class can be regarded as a class of revenue functions mapping from the
valuation tuples of customers Vn to the revenue i.e., F : Vn 7→ R.

Among all revenue functions, there is a “target hypothesis” f∗ corresponding to the optimal auc-
tion. Given a set of past customer data v(1), · · · ,v(m), our goal is to output a hypothesis f̃ ∈ F
that tries to minimize f∗(v)− f̃(v) where v is a unforeseen future valuation tuple coming from the
same underlying distribution.

Notice that, unlike traditional supervised learning task, the label of the target hypothesis f∗ is not
given. Hence, we could no longer compute the E.R.M solution with respect to the past samples.
Nevertheless, we can see that Empirical Revenue Maximizer achieves a similar effect.

Conceptually, we can compare the revenue difference between both f∗ and f̃ to a “base” revenue
function f0 that maps everything to 0 (the revenue function of an auction that does not sell
anything). By Theorem 4.3, we obtain that the empirical revenue is a good estimation over the
population revenue for any auction. Since the empirical revenue of f̃ is always at least that of f∗

(since f̃ is the maximizer), the population revenue of f̃ with high probability will be ε-close to that
of f∗.

4.2 Linear-Separability and (a, b)-Factorable Class

The remaining work is to bound the pseudo-dimension of a class of auction. This section offers
a framework for doing so. As a slight digression, we first visit the concept of linear-separability
(L.S) that is developed in the context of multi-classification, where the hypothesis takes the form
F : X 7→ Q.

Definition 4.4. A class F is d-dimensionally linearly separable if there exists a function
ψ : V × Y 7→ Rd and for any f ∈ F , there exists some wf ∈ Rd with f(v) ∈ argmaxy〈wf .ψ(v, y)〉
and |argmaxy〈wf , ψ(v, y)〉| = 1.

Intuitively, the function ψ and the vector wf offers ways to encode input and hypothesis as high
dimensional vectors such that the classification rule becomes argmax over a simple linear expression
with respect to the encoding vectors. Similar to the notion of pseudo-dimension, the higher the
dimensions needed to perform the encoding, the more complex the hypothesis class and the poorer
its generalization ability.

The reason we mention multi-classification and its related measure of class complexity is that the
allocation rule of an auction is exactly a multi-classification task. In particular, the rule receives
input from the space Vn and outputs an allocation in {0, 1}n·k, where specifies whether customer
i ∈ [n] is allocated item j ∈ [k].

Moreover, the allocation rule offers an effective way to decompose the revenue function of a large
class of auctions: whenever the auction can be expressed as some pricing rule, its revenue would be
simply the sum of the price of all allocated items. With such decomposition in mind, the pseudo-
dimension of the revenue (or the complexity of it) is essentially determined by the complexities of
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two rather loosely coupled components: the allocation rule and the pricing.

At a high level, the allocation rule offers a way to “bucket” the revenue functions in an auction
class. Fixing the allocation outcome, the revenue function is usually reduced to nothing but a
linear combination of some pricing values. Hence, bucketing makes it easier to bound the pseudo-
dimension. To formalize the idea, the authors give the definition of (a, b)-factorability.

Definition 4.5 ((a, b)-factorable class). Consider some F = {f : X 7→ R}. Suppose, for each
f ∈ F , there exists (f1, f2), f1 : X 7→ Y, f2 : Y×X 7→ R such that f2(f1(x), x) = f(x) for all x ∈ X .
Let

F1 = {f1 : (f1, f2) is a decomposition of some f ∈ F}
and

F2 = {f2 : (f1, f2) is a decomposition of some f ∈ F}.
The set F is (a, b)-factors over Q if:

1. F1 is a-dimensionally linealy separable over Q ∈ Y.
2. For every f1 ∈ F1 and sample S ∈ X of size m, the set

F2|f1(S) = {f ′2 : X 7→ R, f ′2(x) = f2(f ′1(x), x)|f1(S) = f ′1(S) and (f ′1, f2) realizes some f ∈ F}

has pseudo-dimension at most b.

If a hypothesis class admits an (a, b)-factoring over the set Q, which the authors refer as the
Intermediate Label Space, the overall pseudo dimension can be bounded by a, b and the cardinality
of Q.

Theorem 4.6. Suppose F is (a, b)-factorable over Q. Then,

PD(F) = O(max((a+ b) ln(a+ b)), a ln |Q|).

The size of the intermediate label space plays an important role in the bound. Hence, it is crucial
to optimize it in order to obtain tight analysis. In particular, it may be possible to introduce a
relabeling q : Q 7→ Q′ which reduces the size of the intermediate label space.

In terms of auction design, the intermediate labels contain exactly the information of the allocation
outcome of an auction. However, the information is often redundantly detailed while used to
compute the final revenue. In particular, for auction that does not discriminate among customers,
it does not matter to whom an item is sold. Hence, we can introduce a relabeling which shrinks
the intermediate space to just {0, 1}k (whether item j ∈ [k] is sold or not). The following remark
gives the interface for performing such optimization.

Remark 4.7. Suppose F is d-dimensionally linearly separable over Q. Fix some q : Q 7→ Q′.
Then, the set q ◦ F = {q ◦ f |f ∈ F} is d-dimensionally linearly separable over Q′.

4.3 PD of simple pricing auction

To begin with, we apply the framework on an auction with 1 customer and 1 item (or in other
word, a grand-bundle pricing auction). Then, any truthful mechanism is just a pricing. Namely,

Alloch(v) = 1{v ≥ ph} (1)

Revh(v) = Alloch(v) · ph (2)
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Claim 4.8. Let F be the class of anonymous grand bundle pricing. Then PD(F) = O(1).

Proof Sketch. For the allocation rule with the pricing rule p, we can use the encoding wh = (1, ph)
and ψ(v, b) = 1(b = 1) · (v,−1). Hence, the function class is 2-dimensional linearly separable.

Fixing the allocation outcome b ∈ {0, 1}, the revenue function is reduced to Revh(v) = b ·ph, which
is just a constant function in 1-d. Obviously, the pseudo-dimension is 2.

Hence, the auction class is (2, 2) factorable over Q = {0, 1}. Using Theorem 4.6, the auction class
has pseudo dimension O(1).

The approach can be easily generalized to the k items, 1 customer setting. Next, we will see
how auctions facing multiple customers can be similarly analyzed by treating them as sequential
execution of a single-customer allocation rule to each customer in order.

Definition 4.9 (n-fold anonymous and non-anonymous sequential allocations). Let H be some class
with h : V×{0, 1}k 7→ Q for all h ∈ H and some Q ∈ {0, 1}k. For some n functions h1, · · · , hn ∈ H
and every v ∈ Vn, inductively define X1(v) = [k], Xi(v) = Xi−1(v)\hi−1(vi−1, Xi−1(v)). Then,
define the n-wise product function

∏
(h1,··· ,hn) to be∏

(h1,··· ,hn)

(v) = ((h1(v1), X1(v)) , (h2(v2), X2(v)) , · · · (hn(vn), Xn(v))) .

Then, we call any such function an n-wise non-anonymous sequential allocation. If h1 = h2 · · · =
hn, it is called the n-wise anonymous sequential allocation drawn from H.

We are now ready to present the analysis for pricing based auctions facing multiple customers and
multiple items.

Claim 4.10. Let F be the class of anonymous item pricings. Then PD(F) = O(k2). If F is the
class of non-anonymous item pricings, then PD(F) = O(nk2 ln(n)).

Proof Sketch. Following a similar argument as Claim 4.8, a unit-allocation which assigns a subset
of k-item to one single customer is (k + 1)-separable. By definition, it means that

Alloch(v) = argmaxb∈Q〈ψ(v, b),wh〉 ,

where wh and ψ(v, b) are vectors in R(k+1).

We will show how we could use it to encode the rule of sequential allocations that performs
h(1), · · ·h(n) in order, where each unit allocation is (k + 1) linearly separable.

Following the definition of sequential allocation, the overall allocation can be written as

Alloch
(1),···h(n)(v) = argmaxb∈Q

n∑
i=1

(
2i · C

)
〈ψ(i)(vi,bi),w

hi〉 ,

where C is a large-enough constant used to enforce the sequence of allocation. In particular, if C
is large enough, bi, the allocation outcome to customer i, is always chosen in priority compared to
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bj where j < i.

It is easy to see that the whole expression is an inner product in the space of dimension (k+ 1) ·n.
Moreover, if we further impose the constrain that the allocation is anonymous. We have that
wh1 = · · ·whn . By linearity of the inner product, we can group the expression as〈(

n∑
i=1

(
2i · C

)
ψ(i)(vi,bi)

)
,wh

〉
.

Then, it is easy to see the allocation rule is still (k + 1) dimensionally linearly separable.

It remains to bound the pseudo-dimension of the revenue function with fixed allocation outcome.
For non-anonymous auction, the revenue function is reduced to

∑
i,j bi,j · pi,j , where bi,j is the

indicator variable for whether item i is sold to customer j and pi,j is the pricing of item i shown
to customer j. So the revenue is reduced to a constant function in space of dimension n · k.

Overall, the non-anonymous auction class is (O(nk), O(nk))-factorable over the intermediate label
space Q ⊆ [n]k. By Theorem 4.6, we have pseudo-dimension of O(nk2 ln(n)).

For the anonymous auction, we only need the information on whether an item is sold or not. Hence,
we can use the optimization trick outlined in Remark 4.7. Then, the intermediate label space can be
reduced to {0, 1}k. Further, the revenue function with fixed allocation outcome becomes a constant
function in space of dimension k.

Overall, the anonymous auction class is (k + 1, k + 1)-factorable over the intermediate label space
with cardinality 2k. By Theorem 4.6, we have pseudo-dimension of O(k2). (so the generalization
ability does not become poorer as we have more customers)

Lastly, we present a rather surprising result from the authors showing that second-price auction
with reserved price can also be analyzed as a sequential auction as long as the customers are
additive-buyers.

Claim 4.11. Suppose V is some set of additive valuations. Let F be the class of second-price item
auctions with anonymous reserves. Then, PD(F) = O(k2). If F is the class of second-price item
auctions with anonymous reserves, then PD(F) = O(nk2 ln(n)).

Proof Sketch. It is not obvious why an auction based on bidding can be treated as sequential
allocations since the outcome depends on the bids coming from all customers. However, it should
be noticed that the property that “items are only allocated to highest bidders” is not specific to
an instance of second-price auction (more specifically, it does not depend on the reserve price) but
rather a global property satisfied by all second-price auctions. This makes it possible to impose
the constrain on the intermediate label space rather than a specific allocation rule. The following
remark offers the interface for implementing such constrain.

Remark 4.12. Suppose for each x ∈ X , there exists some Qx ⊆ Q such that f1(x) ∈ Qx for all
f1 ∈ F1, and that for each x, F1 is linearly separable in a dimensions for that x over Qx. Assume
there is a subset of dimension T+ ⊆ [a] for which wf

t∈T+ ≥ 0 and
∑

t∈T+ wf
t > 0 for all f . Suppose

that for all x ∈ X , f ∈ F1, maxy∈Qx ψ(x, y) ·wf ≥ 0. Then, F1 is a-linearly separable over Q.
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Intuitively, the remark allows us to bound linear separability on a smaller intermediate space Qx
customized for an input. We can therefore enforce the highest-bidder constrain on the space di-
rectly rather than making it part of the allocation rule.

With such simplification, the unit allocation rule becomes clear: we could allocate item i to cus-
tomer j if he/she is the highest bidder and his/her bid exceeds the reserved price. The situation
hence becomes similar to the one in Claim 4.10. As a result, we get the allocation rule is k + 1
dimensionally linearly separable for anonymous auction and n(k + 1) linearly separable for non-
anonymous auction.

It remains to bound the pseudo-dimension of revenue with fixed allocation outcome. Here, we focus
on anonymous reserve price as the two cases are similar.

Fixing the allocation outcome, the revenue function becomes

Rev(v) =
∑
j

max(pj ,max
i′ 6=i∗j

vi′ ({j})) · f1(v)j .

For each item j, if the relative ordering of pfj and maxi′ 6=i∗j vi′ ({j}) were fixed, the revenue function
would again be a constant function in a space of dimension k. Given m sample data, it means that
F can induce at most mk+1 labelings ( the labeling is the one used in Definition 4.2 ).

For each item j, pfj can have m + 1 different ranking over the array of maxi′ 6=i∗j vi′ ({j}) in the m

sampled data points. Since there are k items, it can induce at most (m+ 1)k different ordering. So
in the worse case, the revenue function can induce mk+1 · (m + 1)k different labels. By Definition
4.2, the pseudo dimension is bounded by O(k ln k).

Overall, second-price auction with anonymous reserved price is (O(k), O(k ln k))-factorable overQ ∈
{0, 1}k. Similarly, second-price auction with anonymous reserved price is (O(nk), O(nk ln(nk)))-
factorable over Q ∈ [n]k. By Theorem 4.6, their pseudo-dimensions are bounded by O(k2) and
O(nk2 ln(n)) respectively.
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